Toronto Road Pricing: The good, the bad and the complex

Optimized Time-Dependent Congestion Pricing System for Large Networks

Baher Abdulhai, Ph.D. Aya Aboudina, Ph.D.

Road Pricing Leadership Summit Transport Futures May 12th, 2017

Outline

- Motivation
- Theory
- U of T's Reusable Framework and System
- Application to the GTA
- Conclusions

What is Congestion Pricing?

- Road pricing is any system that directly charges motorists for the use of a road or network of roads.
- Congestion pricing refers to road tolls intended to <u>reduce traffic</u> <u>congestion</u> or to <u>distribute</u> it more evenly over <u>time</u> and <u>space</u>.

Congestion Pricing Inevitable

- Much like traffic lights are!
- Viable congestion control tool
- Revenue is a (welcomed?) by product
- Why inevitable?
 - Demand/Supply > 1.0 --- \rightarrow Congestion
 - Spills over longer periods and larger space
 - Constrained supply (space, \$, environment)
 - Ever increasing demand
 - Ever increasing congestion until it chokes the metropolis
- Not a matter of if, but when, where and how

Evidence Why Congestion Pricing?

Tragedy of the commons *(Hardin, 1968)*.

VKT is quite responsive to **price**, as opposed to transit/capacity expansions (*Duranton and Turner, 2011*).

Therefore, **policy makers** should emphasize *not only* on improving the supply of alternative modes *but also* on **financial disincentives** for **auto use**.

Traffic 101: what is congestion?

Dynamic Hyper-Congestion Pricing The Basic Bottleneck Model

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING Transportation Research Institute

Generalized Dynamic Congestion Pricing

Optimal Congestion Pricing System Framework (Historical) **OD** Demand **Matrices** Levels of $(Iterative) - \begin{array}{c} 2^{nd} \\ 3^{rd} \\ 3^{rd} \\ \end{array}$ **DTA Traffic** Convergence Network **Congested Facilities** Simulator (to be tolled) (Route Choice) Network **Optimal Toll Optimal Toll Performance** Determination LOS Determination – Level II Attributes - Level I **Initial Toll** (Distributed (Bottleneck **Structures for Optimization Updated** Model) **Adjustment Factors** Algorithm) Congested Demand for Initial Toll **Facilities Structures Econometric** Model for **Optimal Toll Determination Departure-Time Choice Testbed Commuters** Personal and Socio-Economic

Attributes

Greater Toronto Area Case Study

Toll Determination – Level I: The Bottleneck Model

Initial (sub-optimal) step-toll structure determination procedure:

1- Travel time (hence queueingdelay) estimation.

2- Identify the tolling period and set the max toll value.

3- Determine the full toll structure.

4- Toll structure smoothing.

Toll Determination – Level II: Distributed Genetic Algorithm (Mohamed, 2007)

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING Transportation Research Institute

(II) Extended Tolling Scenario: GE, DVP, and 401 Express

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING

Transportation Research Institute

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Optimal Toll Structures)

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Total Travel Time Savings)

* percentages are calculated relative to the total base case travel times of each group.

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Corridor Analysis Ex. 1: GE-EB)

FACULTY OF APPLIED SCIENCE & ENGINEERING

Transportation Research Institute

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Annual Benefit-Cost Analysis)

Entity	Overall Costs (\$ Millions)		Overall Benefits (\$ Millions)		Benefit-Cost Ratio
Government (Producer)	Capital Cost:	Annual Cost:	Toll Revenues	Travel Time Savings	2.15 (after 1 st
	88.5	73.2	76.8	80.5	
	<i>Total Producer Costs</i> : <u>1st year</u> : 161.7 <u>After 1st year</u> : 73.2		Total Producer Benefits: 157.3		year)
Toll Payers (Consumers)	Toll Paid: <mark>76.8</mark>		Travel Time Savings	Schedule- Delay Savings	1.61
			97.2	26.4	
			Total Consumer Benefits: 123.6		

Conclusions

- Comprehensive tool for optimal time-dependent tolling strategies in large-scale networks.
- The results demonstrate that:
 - optimal variable pricing mirrors temporal and spatial congestion
 - induces proper departure-time re-scheduling and rerouting
 - improved average travel times and schedule-delays at all scales in addition to benefits to toll payers.
 - more benefits are attained from variable tolling due to departuretime rescheduling as opposed to re-routing only in flat tolling.
 - optimal toll levels intended to manage traffic demand are significantly lower than those intended to maximize toll revenues.

Thank you Questions?

